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The Generation of Three-Dimensional Body-Fitted
Coordinate Systems for Viscous Flow Problems

by Z.U.A. Warsi

Abstract

- The main aim of this research has been to develop and implement

a technique for the generation of spatial coordinates in 3D regions

enclosed by arbitrary smooth surfaces for ultimate use in the

numerical solution of the Navier-Stokes equations. In this regard, a

mathematical model based on a set of elliptic PDE's- has been

developed, which has been used to generate smooth coordinates in the

region formed by arbitrary inner and outer surfaces of known shapes,

around multibodies, particularly around a wing-body combination.

These equations have also been used to generate surface coordinates

in arbitrary surfaces and are also capable of coordinate

redistribution in any desired manner both in 3D regions and in 2D

surface regions. (
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Introduction

4.4

2The problem of numerical grid generation in surfaces and, in -

- ""J

three-dimensional configurations through elliptic PDE's khas been

pursued under this grant ,period.- Various reports and journal

publications produced under ' the present grant have explained the

mathematical model in detail. (Refer to a list of publications

produced in the grant period). The developed mathematical model has

been programed on CRAY-I and has been tested for single and two-body

configurations enclosed in a single outer boundary,(refer to Appendix

C) and for generation of coordinates in a single surface, (refer to

Appendix B). The main elements of the mathematical development are

contained in Appendix A.
7
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A NOTE ON THE MATHEMATICAL FORNMULATION OF THE PROBLEM

OF NUMERICAL COORDINATE GENT.RATION*
Iy

Z. U. A. WARSI

Misiupp: State Unitcrs:r"

Absract. A set of second order partial diffrential equations for the generation of
rl'rcc-dincnsional grids around and bcteen arbitrar) shaped bodies has been proposed.

Thee equations basicall) depend on the Gauss equations for a surface and ha.e been
structured in such a wAay that an automatic connection is establis.ed betv-een the

suci:-eeding generated surfaces.
The vanishing of the Riernann curvature tensor has been u.-ed to i..a.e :iose "Lnda-

nerntal equations %,hich eery coordinate system in eit br tmo- or I,"ee-T.- -'aJ
Euc!"cin spacc must satisfy.

I. Intr 4uctfon. The pro.'em of generating spatial o:,orJnaaes b3 fL:.C i.

a prob;rm of much interest in practically all branches of er..inecrig -cierce and r- sics.
At present a number of techniques are under active deve',prnient for the generation of
,.wo- and tf-ce-dimens;onal coordinates around and be'v.een bodie, of arbitrary shapes.
Among these efforts two easily discernable groups can be formed: (i) te n'eth-ds based

on the solution of ccrtain PDE's, preferably of the elliptic tpe, and (ii) the aic braic
methods. In a l?,rge number of methods in the first group a set of ir)hon-,"gcneous Lplace
equalions is taken as the basic generating system. These cq.iations axe il ,en iaere, and
sohed for the Cariesian coordinates in the transformed plane. Based on this line of
approach which started with the work of Winslo, III some %er) practical results.

part;cularl) in two dimensions, have been obtained b) Thnvapson et a]. 12' and obers.'
For the generation of plane curvilinear coordinates some authors have also used h)per-
bolic and parabolic s)stems of equations, (3]. For the methods in the semond gyoup. i.e.,

the algebraic methods, refer to 13J.
In this paper we have first considered the formulation of a 3D grid gene!--iion scheme

vhich is basical) dependent on the Gauss' equations for a surface. In th~s scheme a series

Rece Ted Ma) 10. 1992 Ths rcxarh has bec. suppc.red b) Or Air Fort Off)i O c .ientific Fet.a-ch,

under W'ant AFOSR B0--O18 The uax'alI of th.s paper is bawed on at exi ded 'aper subtm:,ied at A
N.SA AFOSR ,ptnm.ored .wrifcn¢e on o ur.ar erd &e ,on beld at Na.h-ille, Te-ressee Apnl 13-16.
19A2.1 61

'Rercr to 13] for an extensve bbT;gr4phy on the subject.
C:983 fc'-" CL' rrsify
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222 Z U_ A WARSI

of surfaces are generated based on the given data of arbitrary shaped inner and outer
surfaces. The method has also been structured int such a 96ay that the %ariation of the third
coordinate from one generated surface to the next is fully reflected in the s%5iem of
generating equations. It has been foind that the-se generating systemn of equations are
simple to in.plement numericay. In particular, the solution of the propoc .ed e;ations
tends to the solution of the Laplace equations in the transformed plane in case the surface
becomes a Cartesian plane. An exact solution of these equations for the case of three-di-
mensional curv-ilinear coordinates bezween a prolate ellipsoid and a sphere has been
obtained.

In a plane, or a surface, or a 3D space there are endless possibilites of introducing
either orthogonal br non-orthogonal Coordinates. 7Tis realiation imparts a sense of

arbitrariness to the choice of the method to be used for coordinate generation. If it is aq
priori decided that the method should be based on solving partial differential equations
then the arbitrariness in (he SeCtIon617 Of the appropr-iate equations for the generation of
coordinates bcozmes a pjoblcm to be resolved, In Sec. 3 of this paper it has beer sho.Wnt
that depite this arbitariness it is possble to uncover certain sets of eq-u tiorns A-hic% must
in~ariabl) be satisfied no matter vkhich equatio-ns or methods ha,-e been used to generate
the cck-jd'nales. For a dez-1"'ed discu ;Ion of the rr~ethcOs discussed here and or some
numerical re;Lilts riefer to Warsi 14-71.

2. Gtangs%,Ivm ba,,-d on the Caus equations%. In the process of fmuainof a
3D 'rdtna:c gcr.e-atior. problemn it i . helpful to irna&;ne the oordirates of a point in

space as the intersection of three dist in:t surfaces on each of which oCr~ ae is held
1 2 i

rLxed. Using the conmention of a rigbl-anded cun-ilinear coordinate s)Stem x', X , X or
11 17. (refer to Fig. 1) we introduce the ckN-rdinates in the surf~ace x' =const. thro'..h the
fol]Lo,. ing. scheme.

Fic, I Rijgh! handed coc'4 nale arrane mew ape hasis vec1ts

.....................................................................
%** %** .. ~. -. .
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Thus the unit normal vector on the surface x' = const. is

where

1=:a=2,P3. 2:a =3,.8 =1; ,3: a ,8 2. (2)

From elementary differential geometry 18] we have the result that the rectangular
Cartesian coordinates r = (x, y, z) Or (XI, X2 , X3 ) of any point on e,,ery surface em-
ted--ded in an Euclidean E3 must satisfy the equations of Gauss. The Gauss equations for a

8 2 r3

aurae xne nurac Cto o of the " d= constareg iie.,

o = (ogro. +r, (3)
[a 4 80= , J= p= 2"= 3 ,.= ; = & 1,8 2 (b)

a.hare athe coreineis o thee, eor un d as ,menta o m ine on hee surface a-
the range of 8 with s, follow the scoeme given in (2). In Fq. (3),

8r a'r
ax= . ' ax-ax'

TFs are the surface Crisoffe s)mbols of the second rind e r i.e.,

T'ee g&I(, ]. (4a)

I. +

1 _ x, 8g(4b)

[- ]= - (7)"

and b ar the te ceff;cents of the secnd fundamental form. Se,. on the surface
x' = const, the vector d is orthogona to the surface ,ectors r d,

dbo = i .(3) t te (5)

For the pup.Yse of a cear notation we denote the spat Christoffet s~rbols as

=T,,b 1 , r,, = Tr+b 1, , Tr+b "(ac)

where
k] ( ag,__ + !%k, L. (6b

[# k =+.ax, ax, ax/ k6b
Using ((a), we have

, Or, V r., (7)
ax'axi I

%nhere all the Latin indices assume th~ree values.
To fix ideas, we nisage a surrace which is formed of the surface coordinates (iq) and

on which "-const. Diupping the index s, in Fq. (3), the three equations for the second

derivati,.es of the Cartesian coordinates are

ra = Tpro + b,,n, rg,, = TI'2ra + b,,n. r,,, = T."r, + 6,un. (8a, b.c)

In Eqs. (8) a is orthogonal to both ri and r, and the coeffic;ents of the first fundamental

2 Refer tc Appendix A for a oollectoo of other formulae

. . . . . . . . . .. . . . ., ".' ;. '



224 Z U. A. WARS1
.'a

fo- M .r 1, 1)2, g2 are assumed to have been evaluated at " const. Ob'iously2 +2 ,Z. + 2. (9
- 81 = X IX( I 12*X1X. - +Y ,, +ZjZq, 9 2 =X1+, ,q (9)

Multiplying Eq. (8a) by g,. Eq. (8b) by -2g,2, Eq. (8c) b) gi, and ad..':ng the three
equations, we get

Li + [(Aj)r, + (A 2 ,)rjG, = nR, (10)

where

f 92A8te- 2 120, + 11a1q, (ha)

[ [(:22a8 - 91a) 3+ a8l((glial - g.a,)/Vf4/d[ (I Ib)
G3 911,,22 -(912)2 ,  ( c)

M = (X, Y, z),
X =(yjz - yY,)lG, Y = (x,, - x z,)/I r3 Z (xy, -

(lId)

R = (g 2 b, - 2g12b12 + glbu) = G3(k , + k2 ), (lie)

vhere k1 + k2 is twice the mean curvature of the surface.
The operalor AS7 or simply AL defined in (I lb) is the second order differential ope-.-lor

of Beht:,ni 18J, for the surface " = const For any surface x" = cons, and fol!c,-ing the
" heme (2), we have

&2) [g.,a,)/F/,) + af((g50a, - )G J/Vr (12)

ihere G, are defined in Eq. (A.9). It is easy to show by using the surface Chr;sloffel
s)mbols Tr_8, that

A; = (2g, 2TI2 - g22T, - g1 Tb)/G 3, (I3a)

A 211 = (29 12T12 - 922T I I - g I T2)/G 3, (13b)

%khere the metric coefficients g.,, are those as defineJ in (9). It is interesting to see that
9#hen the Laplacian operator V for a tc-dimensional Cartesian space is applied to the
curvilinear coordinates (j, 71) in an Euclidean plane, the resulting expressions ire exactly
of the same form as (13a, b), that is (refer to Eq. (A.13)),

V2 j= (2g, 2 r,2 - 9 2 r, - 11r )/(J)2 , (14a)

V (29, 2r, - ,2r ,r, 2)/ (j) 2, (14b)
where now

-- +y? +- extnsic, eff-cxts.

Though the right-hand side leim R deined in (I Ie) has the necessay extrinsic effects,
* nevertheless %e must have an explicit dependence of r (x, y, z) on the third coordinate
L. Thus using Eq. (A. 11) we have

- L_
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rig = rrj+ r Ir + vr t  (15a)

ri, = r2+ r 2 r, + rr t, (15b)

= r22r, + 2 l+ r2.r (15c)
and we evaluate each of these derivatives at " = const. Taking the do( product of Eqs. (15)
with n and comparing with Eqs. (5); we getbi= xr3 b = xr; 3 b = \r3 (16a)

where

A= -r, = XxI + Yyj + ZzI. (16b)

Thus, the expression (l ie) for R is replaced by

A = Afg,,r" - 2g, 2r 3 + gr,]. (17)
2.1 Fundamnentalgereeraring yscem of eqlit,'ons. We now impose the following difreren-

tial constraints on the coordinates C? and 17:

A' = O, A.11 = O, (18)

and take them as the basic generating es-ions for the cx'ra;,s in a surface. A
comparison of Eqs. (13) and (14) has alread _hc'.n that A. is not a 2D L-ar'ace Cpcrator
except when the surface degenerates into a pldne ha ing no dcpenence on the :--oordi-
Dale.

It is a ,ell-known result in differential geornetr- that the i,othermic cok-qdinates in a
surface satisfy Eqs. (18) identically. The isothcrmic cox-rdinaies J and -q are those
orthogonal coordinates in a surface ,hich yield gz2 g . The situation here is parallel to
the choice of the Laplace equations V2C = 0, V 2 j = 0 for the generation of plane
cur-ilnear coordinates [2), which are also satisfied b) the c.onfvimal c,.irdinates .in a
plane. The important point to note here is that the satisfaction of the Laplace equations is
a n e:,esary but not a sufficient condition for the existence of confvrrnal c~ordinates.

Sirmilarly, the satisfaction of equations (18) is a ne+.,) but not a suffic;ent c ondition for
the existence of isothermic coordinates. It would, therefore, be more meaningful if we
interpret Eqs. (18) as providing a set of differential constraints! on the metric coefficients
g1j, g,,, and g2 defined in (9).

Having chosen Eqs. (18) as the gcnerating s)stem, the equations for the determ;nation
of the Cartesian coordinates, viz., Eq. (10) becomes

Lr - nR (19)
. here £, n and R have been defined in ( lla), ( lId), and (17) respectiely. The three scalar
equations in expanded form are now

pU( - 2g, 2x, + gIx11 = XR, (20a)

- 2g)y + g = YR, (20b)

1A manifesuation of Lbc zran, possibiLties for introduc;ng cooiraites in a gien P 'I.

.



226 Z U A V6AkLSI

g,2z~ 2g, 2z,, + gI~le =l ZR. (20c)

For a plane z = cnsi., R = 0 and the Eqs. (20) are the in--ersions of the Laplace
equations in the C1I-plane.

It can be show-n that Eqs. (20) can be cAmbined to obtain the equations of a surface
z =z(x, y) in the well knov-n form,

-iz .z, + yz,, =2HM, (21)

where

2H=k) + k 2 RG 3, M I P2 + q2  pz ,z,,

Using the fofllo in& definitions and identities

qA 1(X, X) (10 - X2)G3, AI(X, Ay) -XYG 3, AIy y) = (I Y2 )G3,
where

A,(a. b) =gzabi -1(a + a,bf) + g1 1O~biq

calcu'ating z~f, Z,,, ZRI from zi, z, and substituting these expresin i(2) h uing
E~qs.(20a, b), v6e get Eq+ (2 1).

We now use the result ti~at it (J. nj) is a permissible systemn or cx-.dr,3es in a -.rrace
then so is %~ ) here i CC*1), ij i(f, -q), pro-6ded that the Jacc'an of the

trnsc'ration does not vanish. It is a straight forward matter to sbcu that on coorL4nate
transformation, Eqs. (20) btcorne

£X Y, £y=Y , zZ Rk (22a, b,c)

Nkhere

j22 = I 2g;20( + illaij + a + aaj (23a)

i22 gPI - 2 2 P12 + i P2 (23b)

e Q g~~ -2j 12 P 12 21 I, (23c)

ax a a 2.i,

and X, Y, Z, and R are exactly the same expressions as given in (I 1d) and (17), in the i*
I. cooidinate system. It is preferable to solve Eqs. (22) with P9* as arbilrarily prescribed

functions of the coordinates This aspect of the formulation the~refore provides a Capability
to redistribute the ccordinaie systems in the surfact in any desiyed man~ner!'

2.2 Exaumple of a soluf ion algoritmn. The discussion that fc'llcws pertains to the case
%hen it is desired to generate the 3D curvilbnear coordinates between two arbitrary shaped
smooth surraces. Let the surface coordinates (J ) of the inner bo1dy ,j &nd of the

' For a La-miting form~ of Eqs (22) srer to Appmi~x B.



outer body V 71., be the same coordinates, Thus

i =17,: ir = r.,(C, P); ,J = vj.: r j.t

are known functions (either analytically or numerically) and hence the ne~ed partial
derivatives with respect to C and r' are directly available at the surfaces.

For the computation of r, in the field one must firsi note that the coordinate r may- not,
in general, satisfy the equation 4(2r- 0. Consequently, r, must satisfy the equation

£"'r + G2(A.21 )r1 =G 2(k"' + k(21)W'2). (24)

From this equation we devise a %%eigJhted integral formulas

r, &f f(6)(rd) + f2(ii)(rrr) 1 j ds'. (25a)

where

fG2

-- La n ~(~J~ (25b)

and

A0(i8)=l f,(17) 0. f2(17a) 0. 407%~=l

sThere is no difficulty in ihe numerical evaluation of (25a) in an iterative cycle after the
weighting functionsf1 and f2 have been prescribed a priori.

Referring to Fig. (2a). we now solve Eqs. (20) Or (22) for each const., b) prescribing
the values of x, y, z on the curves C, and C2 wihich respecti~el) represent the curves on B
and oc. In Fig. (2b) C'3 and C, are the cut lines on which periodic conditions are to be
imposed.

2.3 An exact sol"urion of the propos3ed equatio'ns. The follc'vlng example dernc'nstrales that
the propos.ed ,set of generating equations (22) are consistent and pio'ide nontrivial
solutiorns.

We consider the case of coolrdinate generation betwee"n an inner bA') -q = 71, which is a

prolate ellipsoid and an outer boundary n = i?. vwhich is a sphere. The cov-Krdinates which

v'ary on these two surfaces are C and r. A curve C, on the inner surface for =const. is

If'

r !cosh71cos t, y = 7Osinh n. sinrsC. T. z rsinh inrsin (26a)

%here o and ij ar e the parameters of the ellIpsoid. Similarly t- curve (', corresponding to
the same n const on the outer surface is

x = exp(uta)cos, y = exp(i 1 t )sin ntcose . z = exp( a )sin t sina (26b)

$iThe dncussia given hee is directed to the siuations of Fig (2a) For other sationv e g, Simp-Cof-

Frecied domaiis or ula ) pio weis the method of caculating r mut aluays be dc-cd separate1) Note
also (hat Eq (24) reflects the condidor 4'221 0.

(7.777 77

-) -- -=-1



228 Z V A. W.ARS]

:C
C 2

Fir. 2. (a) Tcpoog) of the &,en surfaces.
(b) Surtace to be gcnerated.

In order to generate surfaces on vhich j and 71 are the c'oordinates and in Ahich the
j-cocordinate can nonunifc'-rly be distribLed (ct- :raction or expansion in the 7i coordi-

nales), we assume

C= ~ I) j=,jn +-7-,6, (27)

where 0 corresponding to 0 and i - i,, corresponding to n = i8" Thus J(0) = 0,
*i(B) 0 0. Under the transformation (27), the only nonzero componens of P"'. are Pi1
and P2. Writing

(), e(i) =ddn

we have

IdA I d# (28)Pih - - , S P21 = - dj- (8

Based on the forms of the boundar) conditions (26a, b) we assume the follo ing forms

for x,yz for each . = const.:

x =f()cost, y = #(j)sincos(. z =( )sinsin . (29)

The boundary conditions are

f('r) = tcosh , f() =exp(.),

= sinh, *(.) = e(p(3). (0)

Using the expressions of (29) we calculate the various partial deri,,aties, metric coeffi-
cients, and all other data as needed for Eqs. (22). On substitution we get an equation
containing sin2 " and cos ' . Equating to zero the coefficients of sin' and cos2, we
obtain

%I.5



PROBLEM OF NUME ICAL COORDINATE GENERAFLON 229

7 #,/ a = 78 + */. (31)

= ,e + #'/, (32)

where a prime denotes differentiation with respect to . On direct integrations of Eqs. (31)
and (32) under the boundary conditions (30), we get

f(u) = A exp(Bij(q)) + C, (33a)

0(j) = Dexp(B, (i)), (33b)

where

A r[(exp(i,.) - r coshn,)sih,]/(exp(,) - sinh,7,),

B = - n(Sinh,,))/(q. - 1.),

C = '[exp(Yl.)(coshn,, - sinhi7,)]/(exp(1i7) - r sinhij1 ).

D = 1sinh 17,.

As an application, we take
f (1) = a!, v()=b( k,  (34)

where a, b, and k are constants. Thus

By taking a value of k slightly greater than one (k 1.05) we can ha-.e sufficient
contraction in the Fi-coordinate near the inner surface. For the chosen prk.b'em since the
dependence on r is simple, we find that the generated coordinates beteen a prolate
ellipsoid and a sphere are

x =[Aexp(Bi7(i)) + Cjcos, y Dexp(Bj (ij))mintosc.z= D cxp(Bn( ))sin r'sin J. -(36)

This example also shows that the chosen generating system of equations (20) or (22) are
capable of providing non-isotherrnic coordinates '.etxeen smooth surfaces.

3. Differential equations based on the Riemann tensor. In any given space there are
endless possibilities for the introduction of coordinate cur'es. Each chosen set of cur, es
determines its own metric components. For example, in a Cartesian plane besides
introducing rectangular Cartesian coordinates x, y, we also have endless possibilitles for

introducing either orthogonal or nonorthogonal coordinate curves. However, as is %ell
known, there is a basic differential constraint on the variations of g, 's irre pective of the
coordinate system. Since the curvature of an Euclidean two-dimensional plane is identi-
call) zero, the basic differential constraint on the g,.'s is

(G3 " ",7R1212  r2 r a 'rI =0, (37)

where J, vj are any arbitrary coordinate curves in the plane. Thus no matter which

Coordinate system is introduced in a plane, the corresponding matrics g, must satisfy Eq.

IV

. .--.. -* .- . * - 2
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(37). Equation (37) has also been used as the basic generating equation for the generation
of orthogonal coordinates in a plane [91. In general, the Riemann curnature tensor R, ,

defined as,

-i 2g a 2gj. ~ 2gj,
R'j-, = t axax ax,ax - ax' ax'a"-

+g"(jjn,sJ[rp,:j -[jp,sj[rn,j) (38)

defines the components of the curvature tensor of any general space. If the space is
N-dimensional, then the number of components R are given by N2(N 2 - 1)/12. Thus
for N = 2 there is one distinct suriing component stated in, Eq. (37). Ho,ever, for
N = 3. it has six distinct components R, 2,2 , R1313. R 23,2 R1213, R1232, R 323. If the
3D-space is Eucidean, then its curature is zero, so that the six equations

R1212 = 0, R 13 = 0, R2323  0,

R 1213 = 0, R,2  = 0. R1323 = 0 (39)

determine the differential constraints for the six metric coefficients g, in any crdinate
system introduced in an Eucidean space. These equations in the exra.,:ed form have
been given in [5] and [6).

Equations (39) are those consistent set of partial differential equatijons Vhich must
alv.ays be satisfied b) the merinc "vfficients g,,. In the 3D case Eqs. (39) are six equations
in six urknowns, and, therefore, they form a cloked system of equations. In ntrat, for
the 2D case there is only one equation (Eq. (37)) and three unknowns g,,, 912, g., and
therefore some constraints are needed to turn Eq. (37) (such as orthogonalit, [9) into a
so1 able equation.

To obtain the Cartesian coordinates on the basis of the available g,'s, we introduce the
unit base vectors A, as

-,=&A,/&,, no sum oni. (40)

Let the components of A, akng the rectangular Cartesian axes be denoted as u, r, ii, so

that

where

U, = xI/ 2, / 1 :

u3 - l -- , y//gj, w3 = z (41)

If the components u, v, is; be "me k nown by some method then it is pos>;ble to ea~uate

the Cartesian coordinates through the line integrals

, =f(A g,, di + A2 V9U dn + A3 Vg, 3dtj. (42)

.. . . . * - . . ..' ' . q • % i , . , S . .. " i . . _ . , " , _ . . . .. . . .. . . -
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The determnination of N,, £',, 's is a separate problem w~hich we now consider. First of all
using (40) in Eq. (A. 11), we get a system of first order partial differential equations

aA I I

I •

_ 1/ A 1/2(3J iaxa

+A(S2g" , , ax,, (43)
where there is no sum on the repeated index i. Equations (43) form a system of 27 first

order PDE's in nine independent variables u, v,, w,. This system of equations is
overdeiermined and thus its sobl ability should depend on certain compatibility conditions.
According to a theorem on the overdetermined s)stem of equations [10J, if the compatibil-
ity conditions bold then the solution of Eqs. (43) exists and is unique. The conditions

a2A 1/axaX = a2A,/ aXsax" (44)

for all values of i, m, andj are the compatibility conditions. To prove (44) we use Eq.
(A. 11), which on cross differentiation yields

-x a x - - S- - = ft '..,, $ , (4 5 )

w,4ere R'.,, is the Riemann-Ch-istoffel curvature tensor and is relaed to the Rierann's
tensor RC,. Eidently in our present case R.,,, = 0, since the space is Euc'iJean.
Inserting (40) in (45) we find that Eq. (44) are identia113.satisied.

It is interesting to note that for a t%o-dimensiona. cur--ilir.ar coordinate syscm there is

no Deed to solve the system of equations such as (43). In this case the single differential
equation with G = ( ~~ a ( jrr221R1212  r,,_=

all 91 at S 11
implies the existence of a single function a(t, 1q) such that

- F9 -2V9r
* = ---- r, =

Con--equently

no = cosa, VJ = -si a, ua = cos(a - 0), v2 = -sin(a - 9),

where a is the angle made by the tangent to the coordinate line i = const in a clockwise
sense with the x-axis. and

cosf = "gz/ ,z

is known The dngle a becomes kncwn since g., are known; e.g. 19).
3.1 Case of ,rrfig,nal coop'ates. For orthogonal coordinates since the cosines of the

angles bct, .een the c4.ordinate cures are zero, we have

S12 = S,1 u = 0 . (46)

'.'-" ~ ~ gl e<"" "-."' .:"". . . . .
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Consequently,

[12,3]-I13,2]=[23,1]-o, r,?=r,=r ,  o, -, ,,gj 3.

The equations for the metric coeffi6ents, viz. Fqs. (39) under tbe constraints of ortho-

gonality (46) simpl) reduce to the LAme's equations. The) can concisely be written as six
equations by dropping the summation con-ention in the form

L ( 8h- ( !  8/ s, - , (47a)
ax h ax' ax h a,J h, ax,' 8.'

02h, I h, 8h, I 8h, ah4
It _ _L(47b)

ax x i axi ax, +k ax* axj'

where (i, , k) are to be tAken in the cyclic permutations of (1, 2, 3), in this order, and

To obtain the differential equations for the Cartesian coord:nates x, = x, x2 =y

3 = z, we first proceed from Eq. (A 13) aDd have

'. here
h=jI,2 h3I, V '2 a.. 4 a, + a ".

PrNceeding directl) from Eq. (A.14) and using Eqs. (46) and (48), the equations for the

Cartesian coordinates are

-.x,. 0, m = 1, 2, 3, (49)

vhere

-=_a- hi a + a h"2 a
_ I 2-I

Note that the operator -and the Lap!acian V 2 are related as

where 0 is a scalar.
Equations (47) and (49) are those consistent set of equations whJch e~ery orthogonal

coordinate system must satisfy.
3.2 The case of isohermic coordinates. Isothertnic coordinates in a surface embedded in a

3D Euc!idean space are those coordinates in whch the metric coefficients g,, and g,. in

the surface vj = const. are equal. That is, the element of length ds on 1 ccnst is given by

(d) = = (d~2Jis':== = ,[(dj)' + ( )]

where (, ' are chosen to be the surface coordinates. Using (46) and setting

JS,~ and g 2
= F(ij)

-i
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in Eqs. (39), we obtain the basic equations for 8, whicb are

:r (, as"i-+ =0, (50c)

• : ,(, ,,) -0.(S)
It can easily be verified that the only solution of Eqs. (a0cd) is

s, [ +r,)]/* t'. ac=ost. (51)

Thus from (0b)
= (Pa/dil0 (52)

Substt'tng (51) and (52) in Eq. (50a), the differential eqiuation forf(C, ') becomes

0. W

:_ _ a, a , )+2f=O. (53)

In Kreyszig [I Il] we have the result that if in a portiJon of a surface iso:herrnic
coordnates can be inroduced tlen that portion of the surface can cisonfotnaly be

mapped onto a plane. Thus in effect the solution of Eq. (53) pro5bdees that mapping

functio~n i, hich conformally n.aps a surface onto a plane. As a verification of the above
conclusion, we verify that the function

'f 4e) /( + e2=) (54)

is a solution of Eq. (53). Tis function is rlated with the isothermic coordinates on a

sphere. Using the par hametric equations of a sphere

o oi n (e)],cos, ye ia + ,)]t in6s-€ of t=[a + "(,1 )]sinorms,

and writing

,.. = *,, g'= I ta n-.
/'2' funtionre 0 < * < 2v and 0 m< a < o, we obtain

I ~g3, = g,, = 4(a + p) 2
6 2f,/(I + ) .

Thus nwe equations

x = (a + P)(l - e:)/(I + et),

6y = 2(,, + P')ersin /(I, 4 ),x = 2(a + P,,)]si/(l + =) (+5)
an rtn

,'. -". . . .. + ." '" . ,,,'+-":- ,TJ" ." ", ." .','," . " ." " " . ; - "" ."-. "I".n"ta.n.
.. .. , 7 . +, + , ,. . ,':...t.. .. ., .. . .. , .,. .. .. . .. .. . .,. ... . .. :,, : ,,,,,+. .+,.,.,. 2_

:.*_~ ~ ~ ~ ~ ~~-hr 0. < < 2a and 0 r< 0= < v' 'r,,,,.,:.o. / + ,..+:,: . , we ,uobtain"" '" + '"
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represent a sphere of radius a + P(ti) in terms of the isothermic coordinates . " in the
surface Since P(q) is an arbitrary function of 7;, we no% have the capability of prescribing
a suitable function P(Y) to achieve any sort of contraction on expansion in the field. It is
expected that the representation (55) should prove useful in the computational problems
associated with a sphere.

4. Conclusions. In Sec. 2 of this paper a set of second order PDE's have been obtained
which generate a series of surfaces between the given inner and outer arbitrary shaped
bodies. The necessary mathematical apparatus which connects one generated surface with
its neighbor along with the curvature properties of each surface has been incorporated in
the right hand side'terms of the equations. (Eqs. (20) or (22)). By changing the computa- J
tional techniques these equations can also be us ed to generate the 3D coordinates when
more than one inner bodies are present in the field.

In Sec. 3, based on some basic differential geometric concepts, a number of field
equations have been isolated %hich must always be satisfied by any coordinate s)stem in
an Euclidean space. Efficient numerical methods are to be de'.eloped to sol'e these
quasilinewar equations (Eqs. (39)) on a digital computer.

Appndix A. In this appendL, 96e collect some useful formulae %hich ha.e baen used in
the main text.

As noted in the text, a general curvilinear coordinate s)stem is dcnoted as x', i = 1,2,3,
or as w, h, , ,hile a rectangular Cartesian system is denoted as x,, rn: = 1, 2.3 or as

x, y, z. Since r is a position -vector in an Euclidean space, the ovariant base .ectors a, are
given by

a, = ar/ax, (A.)

while tbe contra%.ariant base vectors ai are given by
= grad x'. (A.2)

The co'.ariant and the contra'ariant metric components are respecti-ely gien by
L, 2 ,.j, gj le a . .21 (A.3) :

Both metric coefficients are related through the equations

9,k = 461 (A.4)

where 81 are the KrTonecker deltas. Also

g = det("), =  (A.S)

Based on (A.4), we also have

a' = gua, (A.6)

where, here and in all the expressions a repeated lower and upper index al',ays stands for
a sum over the range of index values. Also

: - . . . . ...,_ . .. .,. '-S.- , . , '
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g = det(g,) = +33G+ - 13G5 + 9236

= 92G2 + 12 4. + 92G6 = gjGj + g12G4 + 9,3GS, (A.8)

where

61 2233 (23)2 G2 =,193 1 2 G3 = 911922 - (9'12 )2.

G= 3 - g2 g 3 , 33, = 912923- g13g2, G6 = 1213- g23g 1 . (A.9)

Note that

8 it = G1 /g, g 2 G1/g, g33 = 31g,

' 2 G 4 g, g 3  G,/g, s 23 G6 /. (A.10)

The derivative of a covariant base vector is given by

a,/ax' = 8Vr/axax j = Ij a,. (A.ll)

The Laplacian of a scalar 0 in a curvilinear coordinate system is
V'# = t ( ' a2 a# (A. 12)

w here r, have been defined in Eqs. (6).
If= x is any curvilinear coordinate then from (A.12)

Io 'x-= -'Jr,7. (A.13)

If p = x. is any rectangular Cartesian coordinate then from (A. 12)

.gu 2 axi +(v X (A.14)

Appcndix B. In numerical computations it is desirable to solve Eqs. (22) in their limiting

forms on certain special lines in the field. Referring to Fig. (2a), let the x-a-xis be aligned
to pass through the inner body from two of its points, which, when extended in both

directions meets the outer body at its two conesponding points. The portions of the lines

between the inner and the outer bodies form the right and the left segments. On each
segmenty = z = 0, and according to the adopted conention " - 0 and v w on the right
and the left gments respectively for all Nalues oft. With this choice of the axes only Eq.
(22a) is of interest. Taking the imit of Eq. (22a) as 0 -. Oor v - v, we obtain

+ P i./x r =(i)
* (-0

or

where the control function P2 has alread) been chosen a priori. The terms on the right

* hand side of Eq. (B.I) are difficult to assess for their limiting behaviors. However, some

guidance can be obtained fiom the exact solution discussed in Sec. 2.3. This approach
suggests that in any case, the following estimates can be used.

.21[-o-

*
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3(j-11)/2 12 fort" 0or r, (0.2)
S%.

wheref,,f 2,f 3 are functions of i1. Using the estimates (B.2) in Eq. (B.1), w~e obtain

x~f T~i~xj 0.(B.3)

where
'() p2 - -() ,pj) =ff2 f.

The scheme now is to solve Eq. (B.3) by prescribing T(7j) 0 P2, arbitrarily to achieve the
desired control pf points on the segments. Since P. has already been chosen in advance
this approach produces those values of F(ij) (though they need not be calculated) which
are consistent with the basic equation, viz., Eq. (22a).
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ABSTRACT

In this paper a set of second-order partial differential

equations for the generation of coordinates in a given surface have

been developed and then solved numerically to demonstrate their

versatality. The proposed equations are not some arbitrarily chosen

equations but are a consequence of the formulae of Gauss and thus

carry with them an explicit dependence on the geometric properties of

the given surface. Furthermore, these equations are easy to solve

and require only the specification of the bounding curves to provide

the Dirichlet boundary conditions for their solution. Results of

coordinate generation both in the simply and doubly-connected regions

on some known surfaces, with the option of coordinate redistribution,

have been presented. Extension Cf this technique to arbitrary

surfaces seems to be straightforward.

. . . . . ..
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I• INTRODUCTION

The problem of generating spatial coordinates by numerical

methods through carefully selected mathematical models is of current

Interest both In mechanics and physics. A review of various methods

of coordinate generation in both two and three-dimensiohal Euclidean

spaces Is available in [], and reference may also be made to the

proceedings of two recent conferences, [2], £3), on the topic of

numerical grid generation.

This paper is exclusively directed to the problem of

generation of a desired coordinate system in the surface of a given

body and thus, in a basic sense, it is an effort directed at the

problem of grid generation in a two-dimensional non-Euclidean space.

The mathematical model selected for this purpose is based on the

formulae of Gauss for a surface and nas been discussed by the authcr

in earlier publications, [4] - [7]. The resulting equations are

three coupled quasilinear elliptic partial differential equations

with the Cartesian coordinates as the independent variables. These

equations are nonhomogeneous with the righthand sides depending both

on the components of the normal and the mean curvature of the

surface. These equations therefore reflect the geometrical aspect of

the surface in an explicit manner.

The proposed equations have been used to generate

three-dimensional coordinates between two given surfaces by using an

extrinsic form of the mean curvature, [7], £8), (9]. However, if the

purpose is to generate the coordinates only in a given surface then

the intrinsic form of the mean curvature has to be us6d, as has been

done in this paper.

. ... ,,.
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Previous work on the subject of grid generation in surfaces

has been done by using either the algebraic techniques, [10] - [12]

or using the PDE approach, [13] - [16]*. All these methods depend

very heavily on the use of highly accurate interpolating schemes. On

the other hand, the method proposed here depends only on the

availability of the surface equation in the cartesian form and on the

prescription of the data on the bounding curves in the surface which

eventually form the Dirichlet boundary conditions for the proposed

equations.

Numerical solutions of the proposed equations for the

coordinates in either simply or doubly-connected regions of some

known surfaces have been obtained and shown in Figs. (1) - (12). It

has also been shown that any desired control on the distribution of

grid spacing can be excerised by a proper choice of the control

functions, cf. Figs. (7) - (9). Extension cf the proposed method to

arbitrary surfaces is purely formal.

* It has been shown in [16] that the equations proposed in [13] can

be directly obtained by using equations (4.10) - (4.12) of sect.
IV.

". . .. °°," h * . . . ..
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II. NOMENCLATURE

b * n ( r -coefficients of the second fundamental form

in the surface v - const.

D second-order differential operator; (Eq. 3.3)

g det (gij)

G - g g - (g )2; v 1 I, 2, 3.V aa 0 O

gj or g., covariant metric coefficients

gij or gas Contravariant metric coefficients

J - /G Surface Jacobian

(V)
k(V), k I Principal curvatures at a point in the

surface v - const.

. Second-order differential operator; (Eq. 4.13)

nCv) Unit normal vector on the surface v = const.

P. Q, aP Control functions
3D Curvilinear Coordinates

xi  2D Curvilinear Coordinates

xi 3D Rectangular Cartesian coordinates xI  X, X2  y, X3 =z
( )( ) (V) (V),

Xiv) Rectangular components of n(v) X)

X(V) y(v) X(v) - Z(V).
2

3#

r.
' I :. "-  ,- , ,. .:. .- , .;..-, :......., -. ..- .- ..- .- -.. .. ... .. . . . ... . .
'-- - L '-N . .' -.:>:-': ...... . .....
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ag ag agS 0 (- ++ -+x-) the surface Christoffel
axa  axe

symbols of the second kind.

r 1k2 agl agk g
( - -- - the space christoffol of the

second kind.

(v)
A2 x Q BY-- , Beltrami's second-order differential

parameter

(1) Notation For Partial Derivatives:

ajr rT ax petc.C ,a -- -- a . a =; P la  CL

axa' axaax axa

(ii) Note On The Use of Indices:

The Latin indices i, j, k etc. are used when the index range is

from 1 to 3. The Greek indices a, 6, Y, etc. (except v, see

below) are used for the cases when the indices assume only two

integer values.

v - I : a,B etc. assume integer values 2 and 3

v - 2 : a,B etc. assume integer values 3 and 1 (2.1)

v - 3 : a,B etc. assume integer values 1 and 2.

(iii) Summation Convention:

In this paper the summation convention on repeated indices is

implied when the same index appears both as a lower and as an

upper index. Thus the summation convention is implied in Ta

but not in Taa The summation convention is also suspended

when one repeated index is enclosed in the parentheses, e.g.,

as in T(c) "

a

b.I



III. THE MATHEMATICAL MODEL

The mathematical development of the model equations used in

this paper has already been published in [5], [6), [7). However, for

the sake of clarity of exposition we list here only the core steps

leading to the final form of the equations. For the ensuing

development we shall constantly use the conventions and symbols as

stated in Section II of the paper.

The formulae of Gauss, (ef. [4], [17]) for a surface v -

const. are written compactly as

as 8 -r 6  + a(v)b (3.1)

Inner multiplication of (3.1) by GV g then yields

(v) =i('. ,

Dr +tG(A2  x ) r ,= n ), (3.2)

where

D G a (3.3)

and

R G ga$ b G (k W ) +' (V)
= bas V II " (3.4)

Equation (3.2) provides three second-order partial

differential equations for the determination of the Cartesian

coordinates x1 ,x2 , x3 or x, y, z. Hcwever, before we impose any

restriction on the Beltramians Ar) x for the purpose of coordinate

control, it is instructive to state the following results:

"'i' . .. '. ' " , ".. .". - % . . -. S,.. . ... .. . .p .



(I) All the terms in Eq. (3.2) depend only on the surface

coordinates xa . (Refer to the scheme (2.1) for the

variation, of a with ).

(ii) For any allowable coordinate transformation x, i.e.,

xa -a,

the form of the equation (3.2) remains invariant, i.e.,

Dr+G(4M x ) r, n R (3.5)

where now

r etc.,

80

4 - ( ki + k )

(V)(iii) It is important to note that both n and

k(V)+ k (v) (twice the mean curvature of a
I II

surface) are coordinate invariants, viz.,

S - ' (3.6a)
k (V)+ k (V) _k + )
I -II (v v (3.6b)

From Eq. (3.4)

k (v) . (V) 9 ab
II bB' (3.7)

which is the intrinsic form of the mean curvature. To have an

extrinsic form, we consider the formula of the second derivative of

the position vector r in a 3D Euclidean space given as, e.g., [7],

6
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k
- J " rIJC-k (3.8)

-p.

For the surface x, . const., Eq. (3.8) is rewritten as

kk

,"r, ra$ rk (3.9)

where the derivatives with respect to x appearing in r k are assumed

to have been evaluated at x- = const. Taking the dot product of

(3.9) with nCv) and observing that n(v) is orthogonal to any two

vectors among r ,we get

nv. r r V A(V)
.()ras as (3.10)

where

(V)  n(
rv) r

Thus, the extrinsic form of (3.7) is

k (v) + k(v) = gasV A(v)i KI -II a

By using the form (3.11) in Eq. (3.2), we get the model

equations for the generation of another surface from the data of x,

y, z , x,V , Yv ' V of a given surface. This scheme eventually forms

a method for 3D coordinate generation between any two (or more) given

surfaces. For more details and computational results on this aspect

of the use of Eq. (3.2) refer to [7), [8), C9), [16).

Since the subject matter of the present paper is confined to

the problem of generation of surface coordinates in a given surface,

it is sufficient for us to keep the intrinsic form (3.7) In Eq.

(3.2).

7
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IV. THE GENERATING SYSTEM

The model equation for generating the coordinates in a given

surface is now taken as the equation (3.2). To be specific, we take

3the surface x - const. (i.e., v - 3) as the given surface. In

expanded form, taking r - (x,y,z), x E, x2 - n, x3  C , the three

equations are

Dx - [(6(3)&) x + (a (3n XJG3 - X (41)

(3 2 )3)41

Dy + [(A3)E + (60) )yIG3 - (4.2),
22 n 3  (4.2)

Dz + [(()) z + A (3 n)zJ )(3R2 2 (4.3)
where

D = g 22a - 2g12 a3n  + 11a

and

a (3) g IAG (g 12 "G-

3g (4.5)

- (2g12 12  11T22- g2 2 T 1) /G3 '

(3) n - (g1 1  /1 3 2 - a (g12 / 3  / 3

2
=(g1T1 11'r22  9 22T 11)/G 3 .(46

(4.6)

We now suitably restrict the distributicn of the Beltramians

so as to have available a sort of flexibility in the choice of the

coordinates E, n in the surface. The most general form which can be

8S
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chosen (cf. [6), is

!1 (3) _aS 1

2 Qr8' (4.7a)

(3) a0 2
2 Q8' (4.7b)

where 1 2

where P I P are symmetric in a, 8 and represent six arbitrary

chosen control functions. Using the summation convention in (4.7)

and the formulae

11 12 - g2 2  /
g g2 2/G3' g . g12 /G3  g11 3

we have

G3  a 3 M & , ,3 ,n (4.8)

where

T1 1 1
S221 212P12 + g11P2 2, (4.9a)

2 2 2Q g2 2P1 1 - 2g12P1 2 + g11P2 2
•  

(4.9b)

The final form of the eqs. (4.1) - (4.3) is now

4" Lx - X(3 )R , (4.10)
; ' , y ( 3 )

Ly - , (4.1)

w(3)

Lz - Z(3 )R , (4.12)

where

L - g22 a - 2g12 &,n +g 1 a +±

G C(&MO ~a + ( )n) (4.13a'32

'99
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g2a - 2 12 ~n g11 nn n (4.13b)

Equations (4.10) - (4.13) are the basic generating equations

for the curvilinear coordinates in a given surface. T.he function R

appearing on the right hand side of the Eqs. (4.10)- (4.12) is given

by

(3) (3)RI(k + k

The quantity in the parentheses is twice the mean curvature of the

surface and as noted in Sect. III is invariant to the coordinates

introduced is the given surface. Consequently k 3  + kI i

reflects a basic geometrical aspect of the surface and is a function

of the coordinates x, y, z. Since the Cartesian form of the equaticn

z - f (x,y) is assumed to be available for the surface under

consideration, it is obvious from elementary differential geometry

that

k (V) + k (V) CO z 2  z 2zzz +
) ,y xx x y xy

(0 + zxz ]/(I + z + z2)3 /2
yy x y (4.14)

For arbitrary surfaces, it is always possible to generate the

Cartesian form z = f(x,y) of the surface by least square data fitting

thus having k + k as a function of x and y. It is also possible

to solve only Eqs. (4.10) and (4.11) while calculating z from the

given equation z - f(x,y) of the surface. All these aspects have

been discussed in Sect. VI.

10
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V. GENERATING EQUATIONS BASED ON THE VARIATIONAL PRINCIPLE

Two attractive features of the chosen equations (4.1O) -

(4.13) are their simplicity and their explicit dependence on a basic

surface- geometric property, viz., the mean curvature. Any other ad

hoc, though consistent, set of equations can also be used to generate

the coordinates but then it will be extremely difficult to isolate

those basic surface-geometric properties which distinguish one

surface from the other. In this connection the variational approach

is also a possibility which has been used by Brackbill et al [19) for

coordinate generation in a flat space, I.e., a 2D plane.

Generally, let us consider the surface functional

I =V/G3 € d~dn.i * ~dn.(5.1)

Then 51 = 0 leads one to the Euler-Lagrange equations

a rG 3 'b 3

x r x S axr,6 (5.2)

where, referring to Sect. II we have used the summation convention,

xr (r = 1,2,3) as the rectanguler Cartesian coordinates, and

r X

x =
r,8 8' r,aS a aXi ax ax

With these notations, it is a direct algebraic problem to show that

Lx ) ,
2 axf VrG3 r'Y (5.3)

where the operator L has earlier been defined in (4.13a). Let be a

function only of xrB, then expanding (5.2) whiile using (5.3), we get

21
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Lx -M (5.4)

where

13 aG aG aa G (
2 (axr,8 axo axr,B axr

Thus the generating system (5.4) is of the same form as originally

proposed but it looks to be a formidable problem to select that

which yields the right hand sides of Eqs. (4.10)-(4.13). One simple

result for the case when 0 1 1 is obvious. For, in this case the

minimization of I in (5.1) implies

Lxr = 0

and these are the equations for a minimal surface. Another case in

which € F/G with F still as a function only of Xr, yields the
3

Euler-Lagrange equations as (5.4) with M defined as

" G3  aF _G 3  aF
FM rX8  axs x ax r,B

1 ac3 G 3  G3  a ( -F

2G3  aXr, ax F ax 8

xr, (5.6)

* The above case of * = F/G is of interest because the choice3
,F gl + 922 'F- 1  g 2 (5.7a)

or

g1 1 + 22 (5.7b)

is equivalent to the "smoothness" problem in 2D plane coordinates as

shown by Brackbill [19]. It must, however, be stated that

"smoothness" of coordinates in a 2D plane problem is due to the

12



satisfaction of the Laplace equations. No such criteria is obvious

by using (5.7) in (5.6), though it will of course yield a consistent

set of three equations for the determination of x1 , x2, x3.

I
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VI. NUMERICAL IMPLEMENTATION

The numerical solution of Eqs. (4.10)-(4.12) can be obtained

by any suitable numerical method of solution which has proved useful

in any elliptic grid generation problem. In this paper the equations

have been discritized by using central differences for both the first

and second derivatives and then solved iteratively from an initial

guess by using the LSOR. The main difference between the coordinates

in a flat space and in a surface is the appearance of the right hand

side terms in which the quantity R can be established a' rpriori.

This requires a knowledge of the equation of the surface z - f(x,y),

which when used in (4.14) yields R as a function of x and y. For

arbitrary surfaces the equation z = f(x,y) can be established by the

least square method, [18].

To demonstrate the potential of Eqs. (4.10)-( 4 .12 ) as a viable

set of equations for the generation of surface coordinates, we have

selected three well known surfaces for the purpose of introducing a

desired system of coordinates in them.

a. Coordinates In An Elliptic Cylinder Forming A

Simply-connected Domain.

This problem is a prototype of coordinate generation in a

given piece of a surface. The region under consideration forms a

simply-connected region bounded by the space arc n =non -n I =

&00 and & = &1" Here n =no,n I  are the elliptical arcs in the

xy-plane, and & & ,i, are straight-lines parallel to the z-axis.

-".
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The numerical solution of Eqs. (4.1o)-(4.12) can be obtained

by any suitable numerical method of solution which has proved useful

in any elliptic grid generation problem. In this paper the equations

have been discritized by using central differences for both the first

and second derivatives and then solved iteratively from an initial

guess by using the LSOR. The main difference between the coordinates

in a flat space and in a surface is the appearance of the right hand

side terms in which the quantity R can be established a' rpriori.

This requires a knowledge of the equation of the surface z = f(x,y),

which when used in (4.14) yields R as a function of x and y. For

arbitrary surfaces the equation z = f(x,y) can be established by the

least square method, [18].

To demonstrate the potential of Eqs. (4.10)-(4.12) as a viable

set of equations for the generation of surface coordinates, we have

selected three well known surfaces for the purpose of introducing a

desired system of coordinates in them.

a. Coordinates In An Elliptic Cylinder Forming A

Simply-connected Domain.

This problem is a prototype of coordinate generation in a

given piece of a surface. The region under consideration forms a

simply-connected region bounded by the space arc n =non = I ="

V0

0 and = Here n 0 1 1 are the elliptical arcs in the

xy-plane, and = o,, are straight-lines parallel to the z-axis.
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The equ3tions are:

2 2

a2  b 2  0 o

2 2• * x- -
- z zn-n a

2 
b

n n. 2 + : L - 1 , Z = Z (6.1a2 b

0 :x -a. y= z1  z ~z

"I x a, y = , z < Z.

The Dirichlet boundary conditions are provided by the dota of (6.1)

for tne solution of Eqs. (4.lC)-(.2).

b. Cccr-inates In An Arbitrary Ellipsoid Cut By The Planes z zo,

Tnis case is of coo:dinar.t generat on in oubly-conn-c-c-d

rewicn bour-ded by two closed space carves on n J in .

curves = no and n = r, are giver by

2 2 2

0 2 b2 "2n-n 1 : X + -+ Z' 1z =l

a2  b- c (6.2)

*We now i ragine a cut joining the curves n =no, n = whii sri1

remair rg in the surface. As in the 2D s no bcurnd-ry c.r:2iicrs3

can be prescribed on the cut line. H owc;r-, Szr '. vU -

x,y,z ,bovc and below the cut should be th. s-, : Dz :

periodicity conditions:

15

:.. ,.. . . o



X(En) - X(on). Y(C1) - Y(Cosn). z(E1 , n) - z(&on). (6.3)

The Dirichlet conditions (6.2) and the periodicity conditions (6.3)

yield a unique solution to the set of equations (4 .10) - (14.12).

C. Coordinates In An Arbitrary Elliptic Parabolid Cut By The Plane

," Z Z ,O Z Z,
0' 1

This is again the case of coordinate generation in a

doubly-connected region bounded by two closed space curves on an

elliptic parabolid. The space curves n no and n 
= ni , are given by

2 2

2 2 , z- z. (6.4)
n n* 2 b2

S b

Under the boundary data (6.4) along with the periodicity conditions

(6.3) the equations (4.10) - (4.12) have been solved.

In all cases (a) - (c) the control functions P and p

have been set equal to zero, i.e., A 2)n - 0, A2 q - 0, and the

results are demonstrated in Figs. 1 - 6 and Figs. 10 - 12. Figures

7 - 9 show the results of a coordinate concentration near the curve z

- - 0.9 of case (b). In this case we have taken

p1 2 2
O, P11  12

16



* P2P22 -(2.0 * (n-n )InK)InK/(1.0 + (n-no )InK),0 0 (6.5)

where K - 1.1 is a constant.

The computer programs which have been developed to solve the

equations (4.10) - (4.12) have been used successfully for all the

cases enumerated above both with and without coordinate contraction.

Also each case was repeatd to determine whether it is necessary to

solve the z-equation too along with the x and y-equation. It has

been found that solving all the three equations (4.10) - (4.12) or

solving only (4.10) and (4.11) while taking the z Iteratively from z

=f(x,y) produces almost the same results.

17
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V. Conclusions

A set of second order partial differential equations have been

developed and then solved numericaly to generate the coordinates in a

given surface. The proposed equations are a logical outcome of the

formulae of Gauss and thus explicity depend on some basic

differential-geometric properties of the surface in which the

coordinates are to be introduced. The proposed method of surface

coordinate generation is simple to implement and is capable of

extension to arbitrary surfaces.

II
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Figure I. A simply-connected region on the surface of an elliptic cylinder;

data: a = 1.0, b = 0.5, and z = z= 2.0, z z 1 0.0. Viewed after a 20.

clockwise rotation about the x-axis.
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*Figure 2. Data same as in Fig. 1. Viewed after a 200 Clockwise rotation about

* the y-axis.
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tFhre 3. Data same as in Fig. 1. Viewed after a 20 clockwise rotation about
b'ie :-axis,
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Figure 4. A doubly-connected region on the surface of an ellipsoid; data:

a = 5.0, b =3.0, c= 1.0, and Cit. by the planes z z= 0.9, z z 0.

Viewed after a 200 cilockvise rotat~isn ab!-u the (-axis .



4-,

0

4-

4l)

CU

LL.J

J-I-

31
P-A Ld- 4



y

Fi FgLre 6. Data same as in Fig. 4. Viewed after a 200 clock-ase rotation atcut

the z-axis.
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ata an-,~ c:n- juration same as in Fig. 4,coordinate contraction
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Figure 9. Data and configuration saine as in Fi;. 6 , coordi,.ate contraction
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Fi gure 10. A doubly-connected region on the surface of an elliptic paraboloid;

da ta: a = 2 .0, b 1. 0, and cut by the planes *z z 0,01 z z 1 .96.

V Viewed a fter a M0 rotation about the x-axi s



Figure 11. Data same as in Fig. 10. Viewed after a 20* clockwise rotation

L about the y-axis.
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Figure 12. Data same as in Fig, 10. Viewed after a 200 clockwise rotation

, peabout the z-axis.
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APPENDIX C

Computer simulation of three-dimensional grids

/
J. P. Zlebarth and Z. U. A. Warsl

Department of Aerospace Engineering
Mississippi State University
Mississippi State, MS 39762

This paper is devoted to the numerical solution Gauss for a surface. In this acb-me an inner and
of a ret oi second order elliptic partial differential outer boundary surface Is assumed to be Initially
eqatiois for the generation of three-dimensional given. The inner bodies investigated are those of
curvilinar coordinates between arbitrary shaped bod- various sise of ellipsoids, fuselage shapes, two
aed. Startig from the given data on the inner and intersecting spheres or ellipsoids, and a wing-body
and outer surfaces, a series of surfaces are generated coabination. In all cases the outer surface iswhich are connected with one another in such a manner either a sphere or an ellipsoid. A series of sur-
that a sufficiently smooth three-.imensional coordi- faces are generated between the inner and outer
nz:e net is realized. A number of cases pertaining boundary surfaces in such a way that only two coordi-

to the numerical grid generation between two given natts vary in each surface. The equations solved
sjrfaces have been discussed. (Eqs. (4)) are structured in such a way that there is

an automatic connection between succeeding generated

INTRODUCTION surfaces. The result is a sufficiently differenti-
able three-dimensional coordinate system In the an-

Grid generation by computer simulation through closed region. Provisions are made for contraction

carefully selected mathematical models has become a of coordinates in the generated surfaces and results
useful tool in many branches of engineering and phy- are shown for contraction near the inner body.
sics. Aathough the developments in grid generation
are mos:ly due to the problems in computational fluid In the case of a wing-body combination being the
dynamics, the techniques developed are also appli- inner body a set of partial differential equations
caole to all those areas where field equations are (Eq. (6))are solved which transform whatever coordinate
t. be solved on complicated domains. The main idea system is initially given on the body to one in which
behind trld generation by computer simulation is to one of the coordinate lines is the trace of the wing
have a well structured mathematical model which is and body intersection. This new coordinate system
solved for the physical coozdlinates (the Cartesian allows for a smooth matching of the wing with the
coor.inates) as functions of the curvilinear coordi- body. With this now as the coordinate system on the
nares under the constraints of the specified bound- inner body the equations are solved to generate the
aries on which the physical coordinates are known in three-dimensional coordinate system between the wing-
advance, body and the outer boundary surface.

In tie generatiun of two- and three-dimensional MATHEMATICA. MODEL
cocrdiz:ates around and between bodies of arbitrary
shape theze exists two main approaches: (I) alge- The basic mathematical development of the method
braic methods (i0 methods based on solutions of to be discussed is available in Warsi (3), (4), and
partial differential equations (Preferably elliptic the details on the computer simulation are available
partial differential equations). The present method in Ziebarth (5), and Tiarn (6). Below we shall
is concerned with the second class, that is, on solu- briefly state the essential structure of the proposed
tiong of elliptic partial differential equations. model.
Refer to Thompbon, Wars!, and Mastin (1) for moreinformation on algebraic methods. As mentioned in the introduction, the present

model has its origin in the formulae of Gauss for a
Elliptic grid generation systems have some ad- surface. The formulae of Gauss are essentially a set

vantages which seem to make thems better approach to of compatibility relations connecting the second
take (2). The resulting grid is naturally smoother derivatives with the surface Christoffel symbols, the
and there is less danger of overlapping of the grid coefficients of the second fundamental form, and the
I n's. Because uf the elliptic nature of the equs- unit no-mal, all evaluated in the surface. Denoting
tLons boundary slope discontinuities do not propagate the three Cartesian coordinates in space by r - (x,
into the field. Grids generated by solutions of y,z) and the curvilinear coordinates by x i  

"
l lptic equations are relatively easy to adopt to (i - 1,2,3), the formulae of Gauss for the surface

ger.ral boundary configurations and they have the . - const. are
A -bility to incorporate features such as concentration 6 Tv) (1)

-rid ;incs, smoothness, and orthogonality. r - T r + b m ,
.B as d6 to

Tht work is dev-)ted to the generation of three- where repeated lower and upper indices imply suma-
die:.rs1.'nal grids bttweun two arbitrary shaped
boedes. The method has its origin in the formulae of tion, and 2 ra2r ar

-it Ro.cetdvne Division of Rockwell International roa a -
Curporation, Canoga Park, CA 91304. ;xaxi 
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In Eq. (1) T
6
. are the surface Christoffel symbols equations for the generation of surface coLrdinate,

defined as are

T. DX a - a-) Dr + + - (4)

where g8 are the coefficients of the first fundamental Referring to Fig. 1 let the given inner and outer
form. The coefficients of the second fundaental body surfaces be given as n n and -.- n on which
form, bo re defined as the values of r - (xSy.z) ari .w. Since the coor-dinates .' anc ;have been chosen in these surfaces,

oc 
( v ) 

• ro the derivatives r, on the inner and outer surfaces.

-CS denoted as (r.) and (r;)- are known. To connect

one generateCsurfsce through Eq. (4) with the other
where the unit normal n~"

) on the surface x- const. we specify
is

(i)sr,-f (0"(r ) + f (r)(r) (5)n ( .(ro x r)/ Pr x r.1B -C

It must be mentioned that the range of the Creek where f1 (') and f2(r) are suitable weights which are
indices is only on two values. Thus, for v - 3, the such tit
index range is from 1 to 2. From (1), writing the
equations for a - 1, 0 - 1, a - 1, 0 - 2, and a - 2, fI(na -1, f1 (n.) ., f2 (n) - 0, f2 (n_) - 1.
6 - 2, and multiplying the equations respectively by
p22' 12 and ga and adding them together, we get

1+ [(A&) + (a2 n) nr]3 - nR, (2)

where these equations are for the surface C conast.
on which t and n are the current coordinates. In C'
Eq. (2) a variable subscript implies a partial deriv- c
arive, and C

- 9223t; S12'cn + all nn
-

a2 [ 1 (g 2 2 a - S1 2 a)

- i I a
an - 1 2 (a) (b)

2
G3 = 21l22 -(12)

- (X,Y,Z) ,
Fig. 1 (a) Topology of the given surfaces.

(b) Surface to be generated.

(k1  kT)G 3  The set of Eqs. (4) essentially complete the

development of a consistent mathematical model for
where + k is twice the mean curvature of the the generation of surface coordinates, where the
surface at any point. The quantities A2C ad hr eans of proceedings from one generated surface to
are the surface Laplacians or Beltramians. the other is provided by Eqs. (5).

: A set of generating equations can now be obtained SURFACE COORDINATES
by setting

Equations (4) can also be used in a straight
A2 &- P$22/G 3  forward manner to yield surface coordinates based on

(3) prescribed data on certain contours of the surface
Sitself. These equations, (7). provide a means of

%a2n - Qs/0 3  Introducing a new coordinate system based on the

data of an existing coordinate system, e.g., from a
where P and Q are arbitrary specified functions which olar c oordin ate system of Cradon (8) to ay 0-type
exert the desired control on the distribution of coordiate syste i the surface, wich may be needed
coordinates in the surface to be generated. Substi- In certain wing-body combinations. These equations

tucing (3) in (2), the elliptic partial differential are stated as follows.

5
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au -2bu + cu + Pu + Qu C 2 ,

(6a)A

av - 2bv +cv Pv C+ Qvc 2

where u, v are the parametric coordinates In the sur-
face which are to be transformed to the new coordi-
nates ( ,C), and the coefficients a, b, etc., are

2 + 2 -

a l (glV + 213UCVC + g3 +u)/G2  , -..

* b "{8 1 1 V.V 4. g13(u vC 4. u(v ) +. 83 3 ucuC)/G2
,

c .(g.V + 2i 3u vC+ 3 3 u2)I ,

J2  2  u C v, (6b)

and o2u . " are the beltramians defined earlier.
An overhea3 bar meanr a metric coefficient in the u,
v systen, e.g.

Fig. 2 Correspondence of points which does not allow
g1 1  2 + Y2 +  u 2 etc. convergence of the solution.

Equations (6a) and(6b) have been programmed in
Refs. (5) and (6). In (5) these equations have been
used to provide those coordinates which are such
that th. inner 0-type coordinate conforms to the con-
tour created by the intersection of a wing with the
fuselage. Equations similar to Eqs. (6a) and (6b) have
been derived by Caron and Camarero (9) and Whitney
and Thomas (10), the later reference has followed a
very tedius procedure.

NU.MERICAL SOLUTION OF 3-D EqKATI

The system of partial differential equations,
(Eqs. (4), for the generation of a three-dimensional
coordina:e system between two arbitrary shaped bodies
has been solved by finite differences using point-
SOR. Initially the coordinates on the two boundary
surfaces must be prescribed by some method. In this
research these coordinates were prescribed analyti-
cally for sirple shapes or were calculated by a com-
puter subroutine of Craidon (8). Although the choice
of an outer boundary surface is arbitrary there must
be a one-to-one correspondence between points on the r,
two boundary surfaces. In addition, these points
need to be chosen so that the lines joining the
points cn the inner and outer surfaces do not inter- Fig. 3 Correspondence of points which allows conver-
sect. gence of the solution.

Regardless of the method chosen to correspond correspondence in Fig. 2 is that the correspondence
poLnts between the inner and outer boundary surfaces line labeled A in Fig. 2 is not vertical. This line
(see (5) for a discussion of these) it has been should be chosen to be along the y-axis (x - a - 0)
found to be a shape dependent mechanical exercise. so that it is not permitted to change from a quadrant
For example, Figures 2 and 3 show the correspondence where x Is negative to one where x is positive. This
between points on the inner and outer surface for second correspondence problem was found to cause even
the case of intersecting ellipsoids. Although in the solution, for a simple ellipsoid as the Inner
both cases there Is a one-to-one correspondence be- body, to diverge.
tween pointsoneach surface, when the correspondence
of Fig. 2 is used the solution will not converge, Runs were made with both an ellipsoid and a
while that of Fig. 3 does yield a solution to the sphere as the outer body. No advantage was found in
differentia; equations. There are two main problems taking the outer body to be an ellipsoid so a sphere
with the correspondence of Fig. 2. The lines near was used in all other cases.
the rl1,t end are close together and appear to be
parallel. This is believed to be the reason for the In conclusion, the correspondence between the
divergence uf tile solution since the computations inner and outer body is important for the solution of
5topped in this region. Another problem with the equations (4) to converge. There does not seem to be
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a general method which works for all inner body
shapes, therefore, the mcst useful way s~es to be (r _ B ) ( 7
a geonetric manipulation which is dependent on the B - -
inner body configuration. - -

B
Once the correspondence has been established

between the inner and outer bodies an initial guess where K - 1.0 implies no concracci,n -jr t inner
must be made for the values of the Cartesian coordi- b:z

.. 
and .: slightly greater than 1.f3 (-g. 1.05 or

nates in the field. In all cases linear interpola- I._-) iz;lies concractir.. Here 7 is -- ~.:L. as
tion between the points on the inner and outer sur- an integer.

faces was used successfully to accomplish this.
In the case of mere. complicatei =Ape; such as

in:ersecting ellipsoids the exacc s,:hLIor r. nor 'i
kn:.n between it and an outer surface. Hcwe';er,
fcr certain lines in the field e Jazicns (.) can be
solved in their limiting fcr:s. Onr s--h lit Is
the line A'B' in Fig. 5. Warsi (4) has show that
along this line the expression for x can be -ritten
as

maax

Fig. 4 Lines 1 = 1 and ; max for a prolate
ellipsoid surrounded by a sphere.

Before a solution algorithm can be applied to
equations (4) appropriate boundary conditions for

- I and ; ;max (Fig. 4) must be deter-,ined. For Fig. 5 Intersecting ellipsoids S.rZL..e.- bya
the case of a prolate ellipsoid surrounded by a sphere.
sphere an exact solution exists and is used to cal-
culate these boundary conditions. The solution is
given by, (4), X X

BnN~ X(- -B XS4 )

z [A e + Cicos; (7) B(r) - x[ (-------(e - 1) ()

vhere nB where
(e - cosh-3 )sinhn3  n-n n -r

A a B r S()- K (9)

e - sinhn B  n

i;' and the subscripts B and - refer to the inner and
outer body respectively. The expressiun for x in

SIn - JI ng (8) has been used in the case of intersecting spherea.inh,, and ellipsoids to evaluate the boundary conditions

, on the right segment (AA'in Figure 5). A value of K
n, slightly larger than 1.0 is required in (9) to pro-

a (coshn
3 

- Slnhn3 ) duce coordinate systems which are szooth near the
C _ A_ right segment. Because of the orientation of the

an intersecting bodies with the Cartesian coordinctes
B, the boundary conditions for the left segment (BB'

in Figure 5) can be determined by an expression llkO " (7).
einhn(

Once the coordinates on the inner and outer
and n(' ) may be taken as bodies have been specified the C-derivatives on the

:
I
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sorf.Cas ca1n also be calculated by second order finite or j .

diffents. These need to be calculated on both the
Lne-r anc outer surfaces for all values of K from K
. to cc - KZ'AX-l and for all values of I from I - I oar o
to " Im'AX (Fig. 6). The -derivatives are not
re;ared at K * 1 and K - KWAX since these are bound-

. ary conditions.

Special care must be taken at locations where max C or I

th:e exists a mathematical discontinuity (e.g.. at
'-" he ;,tersection point K 

I K. in Fig. 5). A simple
; ve:aiin of he ;-derivatives through this region
w found to adequately smooth out these derivatives. I

Fig. 6 Nomenclature for eliipsoid as an inner
.wo rcre concerns need to addressed before the boundary shape.

4cffrentia: equations can be solved. The first is
the specifica:ion of the functions fI(n) and f2(')
% p-Earing in equation (5). In this research f, was
taken t, be a linear function of i where

ny

and f z) = 1 - f,(z). The second concern is the
spe iiication of the redistribution functions P and
in equation (4). In this work only contraction of

the --lines near the inner body was considered,
therefore, enly the function Q was specified and P
was set equal to zero. Based on earlier two-
di=ensional work (11), (12), Q was prescribed as

gii[2 + C - im)inc]tn K

+ ( i K-
Fig. 7 Coordinates t, C, r on the wing-body combina-

tion.
N__ C. SOLT1ON OF S UFACE EQ1ATIONS

in the case of a wing-body combination equations
(4) are solved, but only after a transformation of
the :oordinate system on the body is made. The body
is :ni:ialy covered by a coordinate system (uv). "
By initially solving equations (6) the (u,v) cc-rdi-
na:e system is transformed into a (7,1) coordinate
s'/:en on the same body. The (r, ) coordinate sys-
te= will cover only half of the original body, but A c
it has the advantage of having one of its coordinate
lines as the trace of the intersection between the 44
body and the wing, Fig. 7. i"

In order to solve the differential equations (6)
bcundary conditions need to be chcsen on the surface
of the body. Although the method for picking points
is arbitrary they need to satisfy a few basic re-
quirenents. The inner boundary is to be the trace
of :he intersection line between the body and wing
(lxe labeled A in Fig. 8;. The outer boundary
(line b in Fig. 8) should be very close to the line Fig. 6 Choice of boundary curves on inner body.
which cuts the body into two similar halfs (line C
in rig. 8). It can even be coincident with part of
this curve as shown in Figure 8. However, the outer varies from 0 to r then 1'

boundary should not be taken to be entirely on this
line since it needs to have a variation over the u (10)

surface of the body, i.e. , a variation in all three ) {(0
Cartesian coordinates x, y and z.

where 1.
When picking the points on the inner or outer

bouL.dry it is necessary to 'be able to find both the
Car: sian coordinates (x,y,z) and the (u,v) coordi- NPI - nunber of patches in
natts for reints within any ratch. This is acecm- U direction
pliF'.(d by ccnsiderlng -araneters - and . which vary
fro: U tc 1 within any patch. Here 6 varies in the and
dir,:tion or the u coordinate and • varies in the
diretlon, of the v coordinate. Obviously since u a
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where
(1,0) (0,0)

NPV - nunber of patches in V 1.2

direction

Based on the parameters . and v a blending equation (1.1) (0,)
can be defined for these surface patches similar to (0,0)
the one used by Craidon (8). This bicubic surface (1,0)
patch equation has the form

r( ) - F (O)(.)rO, + F ()F 2 ()ro-

+ F (.)F2()r + F2 (,)F 2 (.)rl (0,I)1 2 .i,0 . ,I (1,) ( ) Cb

" F()F( )r F2 ()F 3 ()r. Fig. 9 (a) Two of the surface patches wv:h labeling
1 3 0,0 +F2-0, of corner points, (b) Isota:c sur-ace

patch ij shoving parameters and -.

" F(v)F( G)r + F(v)F4( )r
" 1,0 2 1,1

+ F1(i.)F3(v)r +F ) r

2 3 -1,0 2 -". 1,1

+ F (L)F 3 (v)r + F3 (u)Fd(v)r

0,0 0,1

+ F3 (O)F()r + Fd(P)Fd(v)r (12)
1,0 1 .1

where the blending functions can be taken as

3= 203 2 + I Fig. 10 (.,E) coordinate system on surface.
F (QM - 3 +I

F2(5) - 39
2 

- 3 (13) numerical scheme, in particular. poirt successive
over relaxation (SOR) was used. The ini:ial guess

F (6) - 63 282 + 0 for the solution was taken as a simple linear Inter-
3  4polation between the values on the inner and outer

3 2 curves. For the evaluation of the terms in the dif-
F4 ( -0 - ferential equations, i.e. to evaluate the coefficients

a,b,c, 32, A2u, and L2v in (6) the blerding equation

and e is a dum my variable. The mixed second deriva- which already has been defined is used.

tives of r were dropped from equation (12) in all R sLTS AD COCLSIOS
calculations. As was discussed earlier in this
chapter r and also the derivatives of r with respect
to W or v can be calculated at each coiner by finite results are show for prolate ellipsoids ofdiffrenes. hus equtios (1) cn beuse tovarious thicknsses surrounded by either a sphere ord i f f e r e n ce s . T hu s , e q u a t io n s ( 1 4 ) c a n b e u s e d t oa n e l p o d F i s , ) a d ( 1 2 . A o . c s d r dfind j t any poit in any patch if the value of n ellisoid, Fis. Ql) and (2). Also, considered
and for that point is known. Note that i equation as an inner body is a thin circular cross section
(12) the two subscripts of r, N

t
e tad v refer to fuselage, Fig. (13), intersecting spheres or ellip-

particular corners of a patch as sho Figures soids, Figs. (14) and (15), and a win6-body corbina-
''an 10 tion. For the prolate ellipsoids and the fuselage

results with and without coordinate concentration are

As was stated earlier not only are the Cartesian shown.

coordinates r - (x.y.z) required for any point of apac bu lote(,)coriae fta on The equations presented for gcnerating a three-
patch but also the (,v) coordinates of that point dimensional coordinate system between two arbitrary
are required. These can easily be found from equa- shaped bodies (or boundary surfaces) can be solved
tions (10) and (11) if we know which surface patch numerically and give good results for all cases
the point Is in and the values of and vfor the attepted in this research. Inner body shapes which
patch. are simple (e.g. ellipsoids, fuselages, or inters.ct-

nce the boundary p ts have been chsen and Ing spheres and ellipsoids) can easily be ccmhined
the blending equation (1t) has been defined the with an outer body to yiel# a very smooth coordinate

differential equations (6) can be solved by some system between them.
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For the wing-body combination these same equa- Coordinate Generation," MSSU-EIRS-81-1, Mississ-
tions very easily adapt and generate a coordinate ippi State University. 1981.
system as shown in Figures 16a and b. This applica-

. tion requires that the coordinates on the surface of 12. Warsi,, Z. V. A.. and Thompson, J. F., "Machine
the body be transformed by equations (6) to a system Solutions of Partial Differential Equations in
where one coordinate line is the trace of the wing the u.erically Generated Coordinate Systems,"
and the body. Engineering and Experimental Research Station,

Mississippi State University, Report No. MSSU-
At this time the most imposing problem in the RS-ASE-77-1, 1976.

solution of equations (4) is the coorespondence of e*es**aa
the points on the inner and outer boundary surfaces.
As was discussed in reference to intersecting ellip- ,, ," -
soids (Figures 2 and 3) this correspondence may 4

dictate whether ornot the solution converges. The s-a
"gap" near the wing in Fig. 16 is due to the method
used to correspond the points on the body to those
on the outer boundary surface. Although conceptually
it is not difficult to irasine various correspon-
dences of the points on the two boundary surfaces
it canbe quite difficult to generate this correspon- i:
dence through a numerical algorithmjL
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(a)

(a) (b)

Fig. 13 Inner body a thin prolate ellipsoid with
major axis 2 and minor axis 0.13 surrounded
by an ellipsoid with major axis 3 and minor
axis 2.4. (a) Coordinate contours for aa
section C - constant (I 1) for all (n,)
or (J,K) values; (b, for a section - const
(K - 13) for all ( ,rn) or (1,J) values. In
both cases no contraction in n. K -1.

_J "_,J

(b)

Fig. 15 (a) Coordinates on surface of two' intersect-
ing ellipsoids. (b) Coor-dinate cor:.:,rs
between intersi:ting ellipsoids ar a
sphere for a se.tion =cons. (I =1
for all or (3,K) va:-je--. Nc con-
traction in K~ ~1

A

C

*30.1I (a) Mb

(b)
I Fig. 16 Wing-body combination where wing is gen-

erated by extending lines from center of

Fig.14 a) Cordnate onsurfce f tw iner-body through points on surface of body to
Fig.14 a) oorinaes n srfae o tw iner-outer shpere. Arepresents surfa:e co~rdf-

secting spheres. nates on wing. Bre;:esents s..rfaca coordi-
(b) Coordinate contcurs between intersecting nates on body. Crepresents three-dimen-

spheres and an outer sphere for a section in codats etenwl-bywt x

vaus ocontraction in n~, K - .body combination. (b) view from the frcnt
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